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THFI PREDICTION OF INFLIGHT DYNAMIC 

STRESSES I N  TYPICAL SPACECRAET SHELL STRUCTURES 

SUMMARY 

A method i s  presented fo r  determining the in f l igh t  dynamic s t resses  
(rms) i n  cyl indrical  she l l s  using experimental data from ground vibration 
tests t o  es tab l i sh  the natural modes and frequencies, and wind tunnel 
or  f l i g h t  t e s t  measurements t o  es tab l i sh  the magnitude and frequency of 
the fluctuating pressure environment. 
s t resses  i n  a section of the Apollo boi lerplate  structure, and a portion 
of these results are  shown as an example of the method. 

This method was used fo r  predicting 

INTRODUCTION 

For a limited period during boost f l i g h t  when ve loc i t ies  are i n  the 

The dynamic stresses produced 
transonic range, most spacecraft configurations are  subjected t o  an 
intense fluctuating pressure environment. 
by the response of the vehicle structure t o  these f luctuat ing pressures 
must be analyzed and combined with the s t a t i c  s t resses  that r e su l t  from 
i n e r t i a  and air  loads i n  order t o  evaluate the s t ruc tura l  i n t eg r i ty  of 
the spacecraft. 

Assuming t h a t  scaling l a w s  are  suf f ic ien t ly  well known, the 
magnitude and frequency spectrum of the external f luctuating pressures 
may be obtained from wind tunnel experiments using scaled models; and 
the vibration character is t ics  of the structure may be obtained by non- 
destructive tes t ing  of a f u l l  scale prototype structure. Based on the 
r e s u l t s  of such experiments, a method of predicting the in f l igh t  dynamic 
s t resses  (rms) i s  presented i n  t h i s  paper, together with an example of 
the predicted response of a portion of the Apollo boi lerplate  structure.  
There i s  a t  present no way of knowing the exact spatial correlation 
factor  between applied force and modal deflection and an a rb i t r a ry  factor  
of 0.2 has therefore been assumed i n  the example. 
t h i s  paper t o  determine the probabili ty of exceeding stresses tha t  are 
higher than the rms values. 

No attempt is  made i n  
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Maximum deflection - inches 

Maximum distance from neutral  axis t o  outside fiber - inches 

Modulus of e l a s t i c i t y  - ps i  

Generalized force - lbs per cps 

Natural frequency - cps 

Generalized mass - slugs 
Radius - inches 

Area - f t  

Power spectrum - lbs 
2 

2 per radianslsec 

Radial deflection - fee t  

Weight - l b s  

Acceleration - f t  per sec 

Earth gravi ta t ional  acceleration - 32.2 f t  per sec 

(386 i n  per sec ) 

2 

2 

2 

Number of half waves 

Rootniean square pressure - lbs  per f t  2 

Peripherial  length - inches 

Ratio of damping coefficient t o  c r i t i c a l  damping 
coefficient 

Natural frequency - radians per sec 

Bending stress i n  circumferential direction - p s i  

Angle of a t tack 
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METHOD OF ANALYSIS 

General 

The method presented i s  a classical-modal solution f o r  the response 
of a damped vibrating system t o  a sinusoidal forcing function, and i s  
based on the premise tha t  fo r  extremely low values of s t ruc tu ra l  damping, 
there is  no "coupling" between the various natural  modes. 
bution of a l l  forces except those at  or near the par t icu lar  resonant 
frequency being considered i s  therefore negligible. 

The contri-  

-_ 
The natural  modes and frequencies of the structure together with 

the r a t i o  of s t ruc tura l  damping coefficient t o  c r i t i c a l  damping coeffi- 
c ient  are obtained experimentally from a ground vibration tes t  of the 
structure.  
boi lerplate  service module structure i s  explained i n  reference 1 which 
i s  t o  be published i n  the very near future. 

The methods used f o r  conducting these t e s t s  on an Apollo 

The accuracy and quantity of measurements taken during the vibration 
test  cannot be over-emphasized since the f i n a l  answer can be no more 
accurate than the or iginal  input data, and too few o r  inaccurate measure- 
ments may result i n  erroneous conclusions. 

Normalized Ring Stresses 

The normalized ring stresses are defined here as the s t resses  
obtained as a d i r ec t  r e su l t  of the vibration tes t  using an a rb i t r a ry  
shaker force input. I n  order t o  f a c i l i t a t e  the numerical camputations, 
the procedure i s  t o  divide the she l l  i n to  a grid-work of circumferential 
bands and longitudinal s t r ips .  The size of the gr id  i s  arbitrary and 
should be determined by the accuracy desired since the use of a larger  
number of g r id  elements w i l l  result i n  greater  accuracy. 

From the ground vibration test  values of radial acceleration, 
contour p lo ts  of l i n e s  of constant acceleration (a/g) over the en t i r e  
shell  fo r  each natural  frequency are  plotted as shown i n  figure 1, and 
the areas  of the s h e l l  experiencing high accelerations are selected f o r  
stress analysis. If the s h e l l  under consideration i s  non-uniform, f o r  
example, having rings of variable moments of iner t ia ,  the areas under 
highest accelerations may not produce the highest stress, and it may be 
necessary t o  investigate bands adjacent t o  the one having peak accelera- 
t ions.  

By plot t ing values of (a/g) f o r  each selected circumferential band 
and for each selected natural  frequency and drawing a smooth curve 
(approximately sinusoidal)  through the points, as shown i n  figure 2, the 
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deflected shape of the par t icu lar  band when vibrating a t  t h i s  discrete  
frequency is  defined. 

Since the deflected shape of the shell band i s  assumed t o  be approxi- 
mated by a sine wave, it follows that: 

ns U = A s i n  ne = A s in  - R 

And since f o r  small deflections 

d% M 13 

ECf 
- = - - = - -  

2 E 1  ds 

2 
.'. CT = ECfU - n 

R2 

It should be kept i n  mind tha t  the above ring s t r e s s  i s  derived 
frum rms accelerations resul t ing from the structure being vibrated a t  a 
par t icular  frequency using an a rb i t r a ry  shaker force and as such represents 
only a "unit" rms stress which must be multiplied by a "response" 
magnification factor  t o  obtain an in f l igh t  rms stress. 

Response of Structure 

The method of determining the s t ruc tura l  response during f l i g h t  i s  
derived from reference 2 and only the method of obtaining the parameters 
fo r  the response equations and assumptions used w i l l  be given here. 

Terms necessary t o  determine s t ruc tura l  response are the generalized 
mass, generalized force, damping coefficient,  power spectral  density and 
frequency. 

Generalized Mass. - The generalized mass, Mn, i s  defined as the 

effect ive accelerated mass of a structure for a par t icu lar  mode. 
obtained when a multi-degree of freedum system i s  t reated as a single 
degree system, by.virtue of the f ac t  that motion i n  a par t icular  natural 
mode does not produce forces i n  any of the other modes. 

It i s  
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To obtain the generalized mass, the weight of the structure and 
ba l l a s t  or  other weight i n  each element of the previously mentioned gr id  
i s  computed and the weight assumed t o  be concentrated a t  the  center of 
the element. From the contour p lo ts  of normalized accelerations (a/g) 
f o r  each natural  frequency, measured acceleration values are assigned 
t o  the corresponding g r id  elements, and the sum of the product of mass 
and normalized displacement squared over 'the en t i r e  surface of the she l l  
then gives the generalized mass, that is: 

i s  defined a s - the  Fn, Generalized Force. - Generalized force, 

effect ive force on the mode produced by a l l  external forces on the 
s t ructure  when factored by the normalized mode displacement. 

This force i s  caused by the fluctuating pressure occurring along 
the length of the structure and i s  determined experimentally by means 
of transducers located along the vehicle during e i the r  f l i g h t  or wind 
tunnel t e s t s .  
pressure leve l  ( S. P. L. ) f o r  a par t icu lar  reference pressure (usually 
0.0002 dynes per square centimeter) and when plotted versus s ta t ion  the 
S.P.L. for  each band can be determined. 
t h i r d  octave S.P.L. obtained from wind tunnel tests of the Apollo 
configuration. 

Measured fluctuating pressure i s  i n  terms of sound 

Figure 3 i l l u s t r a t e s  the one- 

Sound pressure levels  are  usually measured as the sound pressure 
l eve l  ktween two frequencies (f 2 
depending upon the equipnent used. For t h i s  application the sound 
pressure l eve l  fo r  a band of 1 cps width, that i s  spectrum level,  i s  
desired. Conversion from the one-third octave bandwidth sound pressure 
level t o  the spectrum leve l  (1 cps band leve l )  is-accomplished by the 
follawing equation taken from reference 3 .  

- fl) w i t h  the width of the pass band 

m - 10 log db 

- octave 3 
db/cps = ( 3 )  

I where Af i s  the - octave bandwidth. 3 
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The spectrum level S.P.L. i s  now changed t o  rms pressure by the 
e quat ion : 

(4 1 S.P.L. = 20 log 10 

where 

Pref = 29.1 x 10 -10 ps i  = 0.0002 Dynes/cm 2 

Assuming there i s  100 percent correlation between the direction of 
the applied forces and the modal displacement, the rms amplitude spectrum 
of the generalized force at  any natural  frequency i s  defined as: 

AU elements 

where Fn(wn) = generalized fo-lce (rms) - lbs per cps 

P = pressure - psf 

a/g = normalized rad ia l  acceleration 

AS = surface area of element,- f t  
2 

The power spectrum of the  generalized force which is  required f o r  
the response calculation is  then obtained by squaring the amplitude 
spectrum given i n  equation 5 .  

Since the  amplitude spectrum of the pressure (E) i s  assumed 

uniform over the circumference and i f  a l l  elements of area (AS) i n  the  
band are  equal, it is  only necessary t o  sum the absolute values of the  

modal displacement ( C I E 1 )  i n  the  band and fac tor  by S I - I , where 
S represents the  area of one band. 

Prms 
CPS 
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The contribution t o  

and the  value 
then: 

= s  I -  PrmS 
CPS 

of the  rms 

the  generalized force per band i s  then: 

generalized force f o r  the whole s t ructure  i s  

Band a 

Band z 
(7) 

- .  

- Response € W H O . -  The-mean square diBpPaccmnt of the hOrtiiallze-B, 
gcneralimd coordinate assuming a l inea r  response is  found by the 
equation derived i n  reference 2. 

where 

2 
F 2  n 

Sn = lbs /radians per second 

Since the motion being considered i s  harmonic, the relat ionship 
between acceleration and deflection is: 

2 a .  - 
= u on 
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and the rms acceleration i s  therefore, 

1 

The damping values represented by y 
obtained f r o m  the ground vibration tests and are  assumed t o  remain 
constant with amplitude of deflection. 

i n  the above equations are 

To obtain the rms dynamic s t resses ,  fo r  100 percent correlation the 
stresses obtained by equation 1 must be multiplied by the above ampli- 
f icat ion factor  since the radial deflection used i n  equation 1 is  fo r  
acceleration values (a/g) obtained d i r ec t ly  from the vibration tes t  
using an a rb i t r a ry  shaker force. 

Factors t o  account fo r  l e s s  than 100 percent spatial correlation 
are discussed i n  the example problem. 

Example Problem 

For i l l u s t r a t ion  purposes a recent test  of the  Apollo boi lerplate  

This 
service module, inser t ,  and adapter s t ructure  and calculations of re- 
sul t ing fluctuating s t r e s s e s . a t  Mach number of 0.8 w i l l  be used. 
structure is  ident ical  with the boi lerplate  spacecraft that w i l l  be 
flown on the Saturn Research and Development mission and the external 
dimensions a r e  shown i n  f igure 4. 

Structural  Description.- The types of construction used f o r  the 
three components investigated are similar. 
of the service module consists of an aluminum skin which i s  reinforced 
with rings and longerons. 
addition t o  the longerons. The ax ia l  load i n  the structure i s  carried 
by s i x  equally spaced, heavy longerons which are riveted t o  the skin and 
which extend the en t i re  length of each section of the boilerplate. 
longerons are made up of two steel tees  joined by an aluminum web and 
are of constant depth i n  the in se r t  and adapter as shown i n  figure 5. 
The depth of the longerons i n  the service module varies l i nea r ly  from a 
maximum of 17.2 inches a t  the top end where it mates w i t h  the command 
module t o  5.50 inches a t  the bottom end. The s t ruc tura l  de t a i l s  of the 
longerons a re  shown i n  figures 5 and 6. The skin of a l l  three components 
i s  made from 2024-T3 aluminum a l loy  and i s  of a constant thickness of 
0.16 inches over the en t i r e  boilerplate.  The skin i s  reinforced with a 

The semi-monocoque s t ructure  

The inser t  and adapter have st r ingers  i n  

The 
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t o t a l  of t h i r t y  rings. The rings i n  the three components are all made 
from 2024-Tk aluminum with the exception of the bottom r ing of the 
adapter which i s  made from steel .  The rings i n  the service module are 
evenly spaced a t  intervals  of 12.4 inches wereas the rings i n  the in se r t  
and adapter are spaced a t  unequal intervals.  
dimensions of tyy ica l  rings i n  the service module, i n se r t  and adapter 
are shown i n  figure 7. I n  addition t o  the s i x  heavy longerons, there 
are  a t o t a l  of 28 tee-shaped s t r ingers  made frm 7075-T6 aluminum i n  the 
in se r t  and adapter. 

The cross-sectional 

The s t ruc tu ra l  weight of the t e s t  boi lerplate  i s  6,752 lbs. 
order t o  simulate the weight and center of gravi ty  of the production _ _  
Apollo service module, a t o t a l  of 3,082 lbs  of lead ba l l a s t  i s  attached 
t o  the service module longerons as i l l u s t r a t e d  i n  figures 8 and 9. The 
ba l las t  weight i s  i n  addition t o  the t o t a l  s t ruc tura l  weight of 6,752 lbs. 

In  

The surface area of the she l l  i s  divided in to  a gr id  work of 
26 (designated A t o  Z )  horizontal c i rcu lar  bands and 36 ve r t i ca l  s t r i p s  
of equal a r c  width as shown i n  figure 8. 

Procedure. - By vibrating the s t ructure  at i t s  natural  frequencies 
using an a r b i t r a r y  shaker force input, the normalized accelerations (a/g ) 
over the en t i r e  s h e l l  are obtained and plotted as contour l i nes  of 
constant acceleration. 
shown i n  figure 1. 

A typ ica l  p lo t  f o r  a frequency of 89.8 cps is  

Band N a t  s ta t ion  171.4 i s  selected f o r  analysis a t  t h i s  natural  
frequency since it appears from figure 1 t o  be subjected t o  the highest 
accelerations. Values o f  (a/@;) are  then plot ted around band N as shown 
i n  figure 2. 
wave length of n = 3.0 i s  obtained. 
12.4 inches of she l l  skin) are: 

From figure 2 a maximum a/g of 4.75 and a corresponding 
Parameters of the r ing (including 

Cf = 5.7 inches R = 75.54 inches 6 E = 10.3 X 10 p s i  

The maximum rms rad ia l  deflection and bending stress i n  the ring 
flange under the vibration forces imposed during the shake tes t  may now 
be obtained as shown below from the expression of equation 1. 

0 = 386 4.75 
(2 fi 89.8)2 2 u = g  

maX w .  n 

= 3.74 x 10-3 ins. 
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and 

= 534 ps i  (rms) 

The above stress may be regarded as a "unit" stress which m u s t  be 
multiplied by an amplification factor  (dependent on the r a t i o  of general- . 
ized force t o  generalized mass) i n  order t o  obtain the  fluctuating rms 
st resses  during f l igh t .  

I n  order t o  calculate the generalized mass, the weights of the 
structure and ballast are computed frm detail drawings and the weights 
enclosed i n  each square of the gr id  are assigned t o  the center of each 
element of the gr id  shown i n  figure 8. 
calculated i n  tabular form as shown i n  table  I from the expression given 
i n  equation 2. 

when n = 3 and fn = 89.8 cps. 

The generalized mass is then 

I n  t h i s  example, the generalized mass, Mn, i s  571 slugs 

To determine the generalized force, wind tunnel data from a tes t  
conducted on a 0.055 scale model of the Apollo and Saturn-1 configuration 
i s  used. 
from t h i s  t e s t  f o r  a zero angle of a t tack  and a Mach number of 0.8 i s  
shown i n  figure 3, and the magnitude of t h i s  S.P.L. is  assumed t o  be 
constant around the circumference of each band of the grid. 
one-third octave S.P.L. at  Mach 0.8 from figure 3 i s  reduced t o  the 
spectrum l eve l  (db/cps) a t  the desired center frequency of 89.8 cps by 
means o f t h e  B & K reduction curve shown i n  figure 10, or by equation 3, 
and t h i s  reduced S.P.L. (db/cps) i s  then converted t o  pressure (P 

at  each band s ta t ion  by means of equation 4. 
a frequency of 89.8 cps is  now computed from equation 5 that i s  

The one-third octave band sound pressure leve ls  (S.P.L. ) obtained 

The 

/cps) rmS 
The generalized force for  

- 
Fn - 

A l l  Elements 

= 2293 lbs/cps 
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The detailed computation giving the above generalized force i s  done i n  
tabular form as shown i n  table  11. It should be noted tha t  i n  making 
t h i s  computation the fluctuating pressure i s  assumed t o  be perfect ly  
i n  phase with the deflection function of the vibration mode so tha t  there 
i s  100 percent spa t i a l  correlation, and t h i s  assumption i s  modified 
l a t e r  on t o  allow fo r  a more r e a l i s t i c  spatial correlation factor  of 
20 percent which i s  based on experience of a limited number of Mercury 
f l i g h t  s . 

Having calculated the generalized force and generalized mass, the 
amplification fac tor  that must be applied t o  the previously calculated 
"unit" s t r e s s  of 534 p s i  (rms) i s  now obtained from eqmtion 12 using a 
s t ruc tura l  damping coefficient obtained from the vibration tes t  of 
y = ,006. 

1 .. 1 - 

= 13.56 

The rms fluctuating stress expected in f l igh t  assuming 100 percent 
spa t i a l  correlation i s  therefore 

d = 13.56 x 534 
l-mS 

= 7240 ps i  

To obtain the peak dynamic stress, the rms value i s  multiplied by 
a fac tor  of 3 which gives a stress that occurs 0.3 percent of the time. 

Measured f l i g h t  data from the Mercury missions MA-2, MA-3, and MA-4 
was reviewed t o  obtain a factor  t o  account f o r  the f ac t  that the spa t i a l  
correlation of the fluctuating pressures i s  much l e s s  than 100 percent. 
A fac tor  of 0.2 was deduced as being a reasonable value. 

The f i n a l  dynamic stress is  then 

S ta t i c  s t resses  occurring simultaneously with these dynamic s t resses  
must be added t o  obtain a f i n a l  r ing stress, 
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CONCLUSIONS 

The preceding method provides a reasonably fast method of predicting 
dynamic stresses during f l i g h t  i n  complex, non-uniform s h e l l  s t ruc tures  
using vibrat ion and wind tunnel test  data. 
assumptions are used i n  the analysis,  and these should be borne i n  mind 
when applying the method. The s p a t i a l  correlat ion fac tor  on f u l l  scale 
vehicles is not w e l l  defined and cannot be measured direct ly .  

Several simplifying 

-_ 

1. NASA Working Paper: Shel l  Modes, Frequencies and Structural  Damping 
of Apollo BP-9, unpublished. 

2. Thompson, W. T. and Barton, M. V.: The Response of Mechanical 
Systems t o  Random Excitation, Journal of Applied Mechanics, 
June 1957. 

3.  Handbook of Noise Control, McGraw-Hill. 
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TABLE 111. - DAMPING RA!I'IO 
Mach Numbers = 0.8 a = 0 

'1 I 

Frequency I Damping 
Ratio, y 

46.5 I I 0.005 

I I 
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i Jdce .10 . 

c .  Typical serv3ee d u l e  ring 
Station 2lz.4 to 23'7.2 

a. 

Figure 7.- Typical s t ruc tura l  d e t a i l s  of BP-9 rings and s t r ingers  
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